pyeeg.cca
.CCA_Estimator
- class pyeeg.cca.CCA_Estimator(times=(0.0,), tmin=None, tmax=None, filterbank=False, freqs=(0.0,), srate=1.0, fit_intercept=True)
Canonical Correlation (CCA) Estimator Class.
- xlags
Array of int, corresponding to lag in samples at which the TRF coefficients are computed
- Type:
1d-array
- times
Array of float, corresponding to lag in seconds at which the TRF coefficients are computed
- Type:
1d-array
- srate
Sampling rate
- Type:
float
- fit_intercept
Whether a column of ones should be added to the design matrix to fit an intercept
- Type:
bool
- intercept_
Intercepts
- Type:
1d array (nchans, )
- coef_
Actual TRF coefficients
- Type:
ndarray (nlags, nfeats, nchans)
- n_feats_
Number of word level features in TRF
- Type:
int
- n_chans_
Number of EEG channels in TRF
- Type:
int
- feat_names_
Names of each word level features
- Type:
list
Notes
Attributes with a _ suffix are only set once the TRF has been fitted on EEG data
Methods
CCA_Estimator.fit
(X, y[, ...])Fit CCA model.
Get metadata routing of this object.
CCA_Estimator.get_params
([deep])Get parameters for this estimator.
CCA_Estimator.plot_activation_map
(pos[, ...])Plot the activation map from the spatial filter.
CCA_Estimator.plot_all_dim_time
([n_comp, n_dim])
CCA_Estimator.plot_compact_time
([n_comp, dim])
CCA_Estimator.plot_corr
(pos[, n_comp])Plot the correlation between the EEG component waveform and the EEG channel waveform.
CCA_Estimator.plot_spatial_filter
(pos[, n_comp])Plot the topo of the feature requested.
CCA_Estimator.plot_time_filter
([n_comp, dim])Plot the TRF of the feature requested.
CCA_Estimator.set_fit_request
(*[, ...])Request metadata passed to the
fit
method.
CCA_Estimator.set_params
(**params)Set the parameters of this estimator.
CCA_Estimator.set_transform_request
(*[, ...])Request metadata passed to the
transform
method.
CCA_Estimator.transform
([transform_x, ...])Transform X and Y using the coefficients