pyeeg.preprocess
.MultichanWienerFilter.set_fit_request
- MultichanWienerFilter.set_fit_request(*, cov_data: bool | None | str = '$UNCHANGED$', y_artifact: bool | None | str = '$UNCHANGED$', y_clean: bool | None | str = '$UNCHANGED$') MultichanWienerFilter
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
cov_data (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
cov_data
parameter infit
.y_artifact (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
y_artifact
parameter infit
.y_clean (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
y_clean
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object