pyeeg.models
.TRFEstimator.fit
- TRFEstimator.fit(X, y, lagged=False, drop=True, feat_names=(), rotations=())
Fit the TRF model.
- Parameters:
X (ndarray (nsamples x nfeats)) – Array of features (time-lagged or not, if it is, then second dim’s shape should be nfeats*nlags)
y (ndarray (nsamples x nchans)) – EEG data
lagged (bool) – Default: False. Whether the X matrix has been previously ‘lagged’ (intercept still to be added).
drop (bool) – Default: True. Whether to drop non valid samples (if False, non valid sample are filled with 0.)
feat_names (list) – Names of features being fitted. Must be of length
nfeats
.rotations (list of ndarrays (shape (nlag x nlags))) – List of rotation matrices (if
V
is one such rotation,V @ V.T
is a projection). Can use empty item in place of identity matrix.
- Returns:
coef_ (ndarray (nlags x nfeats x nchans))
intercept_ (ndarray (nchans x 1))